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Overweight
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Overweight is associated with Quality of Life
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Is this association causal?
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* Unmeasured confounding!
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Mendelian randomization (MR)
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Nature rolls the dice!
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The math behind
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Natural experiments are imperfect!

1. Most genetic variants are irrelevant!
In the past: rely on expert knowledge
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Natural experiments are imperfect!

1. Most genetic variants are irrelevant!
In the past: rely on expert knowledge

Modern approach: GWAS
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Natural experiments are imperfect!

2 Some of SNPs that pass the GWAS test may still be invalid
due to pleiotropy
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Natural experiments are imperfect!

2 Some of SNPs that pass the GWAS test may still be invalid
due to pleiotropy

Existing solution: Valid causal inference with some invalid
instruments (Bowden et al. [2015], Kolesár et al. [2015], Kang et al.
[2016], Hartwig et al. [2017], Guo et al. [2018], Hartford et al. [2020])
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Valid causal inference with some invalid instruments
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Summary of existing solutions

Step 1 GWAS based on strength of the links Zj → X , j = 1, . . . ,p

Step 2 Apply a mode-finding algorithm to identify the valid IVs

Step 3 Use the valid IVs to estimate the causal effect
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A toy simulation
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Sample size = 500
Zj , j = 1, . . . ,50,000,U ∼ N(0,1)
Linear models
True causal effect X→Y is 2
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Step 1: GWAS

Step 1.1 (Marginal screening): Select the top 500 candidate
IVs Zr based on the marginal correlation

|Cor(Zj ,X )|, j = 1, . . . ,50,000

Step 1.2 (Joint thresholding): Fit a debiased Lasso model

X ∼ Zr

Result: On average left with 21 candidate IVs

� Include the 7 relevant IVs (5 valid, 2 invalid) every single
time!
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Step 2: Mode-finding
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Step 3: Causal effect estimation

� The causal effect estimates are biased!

Bias = −0.22 (SE = 0.02)

Coverage probability = 0.07 (nominal = 0.95)
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What went wrong?

Recall in Step 1: Select 21 candidate IVs

5 valid
2 invalid
14 irrelevant with spurious correlation
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What happened in Step 2
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Distribution of causal effect estimates for candidate IVs passing joint
thresholding across 1000 Monte Carlo runs
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All irrelevant “instruments” are alike. Why?
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The simplest case (extreme confounding)
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Single unmeasured confounder U
X is only determined by U

18 / 35



The simplest case (extreme confounding)
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Recall that under the IV framework,

X → Y =
Z → X → Y

Z → X
=

Cov(Z ,Y )

Cov(Z ,X )
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The simplest case (extreme confounding)
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In the case of irrelevant “instrument,”
Cov(Z ,Y ) = Z → U → X → Y + Z → U → Y
Cov(Z ,X ) = Z → U → X

So
Cov(Z ,Y )

Cov(Z ,X )
= X → Y +

U → Y
U → X

The bias is the same for all irrelevant “instruments”!

In fact, also same as the bias from Y ∼ X
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What happened in Step 2
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What we know so far:

All valid instruments are alike

All irrelevant instruments are alike

Invalid instruments are different from each other

How to distinguish valid instruments from irrelevant ones?
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Key idea: Generate pseudo variables by permuting rows of Z ,
denoted by Z ∗

Group 1: valid instruments in Z

Group 2: invalid instruments in Z

Group 3: irrelevant instruments in Z

Group 4: irrelevant instruments in Z ∗

Groups 3 and 4 are alike! We can track variables in Group 4.
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Step 2: Remove causal effect estimates inside the range of
pseudo effect estimates
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Step 3: Develop a mode-finding algorithms to identify the valid
instruments
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Step 4: Use the selected valid instruments to estimate the
causal effects
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Theoretical guarantees
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Wisconsin Longitudinal Study

Participants were graduates from
Wisconsin high schools in 1957 and
their siblings

Use 3023 unrelated individuals
re-interviewed in 2011

Exposure: BMI (only those ≥ 25)
mean (SD): 30.6 (4.9)

Outcome: Health Utility Index Mark
3 (HUI-3)

between -0.22 and 1
mean (SD): 0.79 (0.23)
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Crude analysis
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After adjusting for age, gender and education, one unit BMI
increase associated with 0.011 unit decrease in HUI-3 (95% CI
= [0.009, 0.013])
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Conceptual Mendelian randomization model
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Consider baseline covariates including age, gender,
education and population stratification (top 6 principal
components)
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Data analysis: Prepossessing + Step 1

Quality control + 3,683,868 SNPs left

Generate the same number of pseudo SNPs by permuting
the rows of the Z matrix

After GWAS: 44 SNPs + 42 pseudo
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Data analysis: Steps 2-4
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Data analysis: Ignoring spurious instruments

32 / 35



Data analysis: Ignoring spurious instruments
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Comparison of results
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Summary

Mendelian randomization is a powerful tool for causal
effect estimation

Challenges for MR studies
Find relevant IVs + GWAS
Deal with pleiotropy + find the mode of effect estimates
Bias due to spurious variables in GWAS

Spurious IV bias is potentially a serious problem
Ignoring Spurious IV bias has a similar effect as ignoring
unmeasured confounding bias

Fight noise with noise
Use pseudo variables to correct for Spurious IV bias
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